
Appendix
A.1 Network Architecture

In this section, we detail the network hyperparameters used
in our model, focusing on the structure of the EmbedNet, the
layer-specific parameters of the UNet, and the kernel sizes
for both spatial and temporal denoising.

Input-Encoder Layers. Similar to previous works (Işık
et al. 2021; Balint et al. 2023), our student model and teacher
model both utilize a three-layer EmbedNet connected by
Leaky ReLU activations. The student model is configured
with 32 channels in the hidden layers, while to capture more
comprehensive hidden layer information, our teacher model
employs 256 channels.

U-Net. Similar to previous denoising works, we employ
a standard U-Net architecture, utilizing max-pooling for
downsampling, Leaky ReLU for activation functions, and
concatenating skip connections. For the student model, we
optimize performance by using a more compact architec-
ture with channel counts as follows: c32c32d → c64c64d →
c128c128d in the encoder, a bottleneck with 128 channels,
and a decoder with channel counts: c64c64u → c32c32u.

In contrast, the teacher model is designed with a more
extensive architecture to enhance the denoising capability
by learning more detailed features. It employs larger chan-
nel counts in the encoder: c128c128d → c256c256d →
c512c512d, a bottleneck with 512 channels, and a decoder
with channel counts: c512c512u → c256c256u.

Pyramid Kernels. We adopt a pyramid kernel structure
in both the student and teacher models, following the ap-
proach by NPPD (Balint et al. 2023). Similar to NPPD, we
use average pooling with a size of 2x2 for downsampling. As
described in the main text, the student model employs a ker-
nel size of 5, while the teacher model utilizes progressively
larger kernel sizes of 5, 7, and 9 in successive layers. For the
upsampling layers, in contrast to NPPD, we don’t predict
upsampling weights and use them to guide the upsampling
process for each pyramid layer, which is time-consuming.
Instead, we adopt a bilinear upsampling strategy which has
better time performance.

A.2 Analysis of the Pyramid Filter
In our work, we adopted the pyramidal filter proposed by
Balint et al. (2023) as part of our network architecture. To
evaluate the effectiveness of this approach, we conducted
a series of experiments comparing the performance of net-
works utilizing the pyramid structure against those that di-
rectly predict parameters using the UNet. Fig. A.1 revealed
that student models without the pyramid structure struggled
to effectively remove noise, demonstrating a clear disadvan-
tage in denoising capabilities. On the other hand, the inclu-
sion of the pyramid structure did not significantly impact
the runtime efficiency, indicating that it offers a favorable
balance between performance and computational cost.

Ours (S)

w/o Pyramid

Figure A.1: Ablation on the pyramid filter. The student
model without the pyramid structure struggles to effectively
remove noise, as shown in the noisy conditions presented in
the image, demonstrating a clear disadvantage in denoising
performance.

A.3 Run Times
We use TensorRT version 8.6 to optimize CUDA kernels for
inference of all neural network layers in our student model.
The kernel fusion strategy followed the default settings, in-
cluding simple ReLU fusions and automatic kernel tuning.
At run time, the optimized kernel use tensor cores and en-
ables mixed precision with FP16.



ONND

23.78

WS

23.34

NPPD

24.34

Ours (S)

25.47

Reference

PSNR

ONND

29.73

WS

28.89

NPPD

30.54

Ours (S)

30.93

Reference

PSNR

ONND

31.99

WS

29.62

NPPD

32.14

Ours (S)

33.92

Reference

PSNR

ONND

24.43

WS

23.24

NPPD

24.46

Ours (S)

25.04

Reference

PSNR

ONND

28.35

WS

26.62

NPPD

28.52

Ours (S)

29.24

Reference

PSNR

Figure A.2: Qualitative and quantitative evaluation of our student model (Ours (S)) on denoising input images rendered at 4
spp. We make comparisons with several real-time Monte Carlo denoising methods: ONND, WS and NPPD, on the Bistro,
Classroom, Dining room and Zero-Day scenes.



Input OIDN

26.16

Ours (S)

25.68

Ours (T)

26.42

Reference

PSNR

Input OIDN

30.43

Ours (S)

30.34

Ours (T)

31.53

Reference

PSNR

Input OIDN

35.04

Ours (S)

34.88

Ours (T)

36.49

Reference

PSNR

Input OIDN

25.45

Ours (S)

25.54

Ours (T)

25.67

Reference

PSNR

Input OIDN

29.22

Ours (S)

29.29

Ours (T)

29.56

Reference

PSNR

Figure A.3: Qualitative and quantitative comparisons of our two models: Ours (T) and Ours (S) against the state-of-the-art
offline Monte Carlo denoising method: OIDN, on the Bistro , Classroom, Dining room and Zero-Day scenes.


