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Abstract

Monte Carlo ray tracing typically produces noises due to its
stochastic nature. Currently, using a dedicated neural network
trained on a large dataset has become a prevalent way to
perform denoising. However, existing neural networks that
produce high quality noise-free images are usually plagued
by their low efficiency due to the large model size, pre-
venting them from being deployed to real-time applications.
To address this fundamental issue, we propose a render-
aware knowledge distillation (RAKD) framework, specifi-
cally designed for neural network based Monte Carlo de-
noising methods. The framework is comprised of several key
modules that help to better transfer rich learning representa-
tions from a well-performing but cumbersome teacher model
to a compact and lightweight student model. Considering
that rendering contents are dense and structural, we adopt
a local-to-global knowledge distillation module that operates
on both pixel level and image level. We also incorporate a
render-aware parameter initialization strategy and construct
an auxiliary unlabeled dataset to further improve the stu-
dent model’s performance and generalization ability. Experi-
mental results demonstrate that RAKD achieves state-of-the-
art denoising quality while upholding real-time performance,
successfully tackling the computational constraints faced by
resource-limited devices.

Introduction
Monte Carlo (MC) ray tracing can simulate a wide range of
lighting effects by randomly sampling light paths and aver-
aging their contributions in every pixel. Despite its signif-
icant computational cost, it has become the de facto stan-
dard in offline rendering scenarios (e.g., movie production)
due to its accuracy and flexibility. Recent advances in pow-
erful hardware and GPU ray tracing APIs (Sandy, Anders-
son, and Barré-Brisebois 2018; Harada 2020; Burgess 2020)
bring real-time ray tracing (RTRT) into reach. Nonetheless,
ray budgets are still limited, particularly on resource-limited
devices. Existing RTRT algorithms can only afford very low
sampling rates (typically 1˜4 spp), resulting in distracting
noise.

Over the past decade, neural networks have demonstrated
remarkable success in image denoising for Monte Carlo
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(MC) rendering, offering significant advancements in visual
quality and computational efficiency (Zwicker et al. 2015;
Huo and Yoon 2021), with architectures incorporating ad-
vanced techniques like transformer blocks (Lu, Xie, and
Shen 2020; Yu et al. 2021), deformable convolution (Wei
et al. 2021), and adversarial training (Xu et al. 2019; Lu
et al. 2021; Yu et al. 2021). However, despite their impres-
sive performance, the practical deployment of neural denois-
ing methods in real-time graphical applications is often hin-
dered by the high computational resources and memory re-
quirements. To address this issue, research has increasingly
focused on the development of lightweight neural models
(Meng et al. 2020; Fan et al. 2021). These models, while
beneficial in reducing computational load, typically achieve
lower image quality due to their reduced model capacity and
limited learning ability.

Monte Carlo denoising, particularly in the context of real-
time applications, has seen a variety of approaches with
both traditional and neural techniques. Traditional real-time
denoising filters, such as those proposed by Schied et al.
(2017); Zhdan (2021); Nvidia (2022b,a), continue to be
prevalent in scenarios demanding high frame rates, where
computational budgets are constrained. These methods, al-
though non-machine-learning-based, excel in delivering per-
formance under tight computational constraints.

In the real-time context, the focus has been on simplify-
ing model size to meet performance demands. For instance,
Meng et al. (2020) introduced a lightweight network that
predicts a multi-scale pyramid to splat noisy data into a bi-
lateral grid, while Işık et al. (2021) leveraged the pairwise
affinity of per-pixel features for noise reduction and tempo-
ral stability. Additionally, Fan et al. (2021) proposed a net-
work encoding of kernel weights to construct filter kernels
using a hand-crafted decoder, and Thomas et al. (2022) com-
bined supersampling and denoising within a U-Net inspired
architecture. Most recently, Balint et al. (2023) introduced a
novel pyramidal filter equipped with adaptable partitioning
and upsampling stages.

While lightweight kernel prediction networks have
demonstrated fast performance with decent denoising re-
sults, they often suffer from limited receptive fields and over-
blurring issues. Our work builds upon these efforts by intro-
ducing a lightweight kernel prediction network that lever-
ages knowledge distillation, enabling the network to learn



from the broad receptive fields and detail preservation capa-
bilities of offline teacher denoisers. This approach aims to
balance the trade-off between computational efficiency and
image quality, making it suitable for real-time Monte Carlo
rendering.

To address the above issue, we resort to knowledge dis-
tillation (KD) (Hinton, Vinyals, and Dean 2015) which
is a promising model compression technique that trans-
fers rich learning representations from a well-performing
but cumbersome pre-trained teacher model to a compact
and lightweight student model(Hinton, Vinyals, and Dean
2015). This approach has gained popularity for its abil-
ity to allow smaller models to perform at a level closer
to that of larger models while requiring fewer computa-
tional resources, making it particularly useful in resource-
constrained environments.

Knowledge distillation was first introduced by Hinton,
Vinyals, and Dean (2015), demonstrating that the soft out-
puts (class probabilities softened with temperature) of a
trained model could train a smaller model more effectively
than hard labels alone. Beyond image classification tasks,
KD has been successfully applied to more complex per-
pixel tasks such as semantic segmentation and depth estima-
tion. For instance, Liu et al. (2019, 2020) presented struc-
tured knowledge distillation schemes, including pair-wise
and holistic distillation using GANs, to enforce consistency
between the outputs of compact and cumbersome networks.

In the realm of image denoising, Young et al. (2021) pro-
posed a Feature-Align layer that enforces attention to spa-
tially varying noise, enhancing KD on RAW image denois-
ing through a feature matching loss. Similarly, Zou et al.
(2023) introduced LUNet, a lightweight image denoise net-
work, alongside a distillation algorithm with retargeting su-
pervision to improve efficiency. Other innovations include
Shu et al. (2021)’s channel-wise distillation for dense pre-
diction tasks, which differs from traditional spatial distilla-
tion methods.

Despite its success in various domains, knowledge distil-
lation has yet to be widely adopted in real-time rendering
applications. Our proposed render-aware knowledge distil-
lation (RAKD) framework aims to bridge this gap by lever-
aging KD to significantly reduce the computational demands
of neural denoising models, ensuring the high quality of de-
noised images even in real-time settings. By doing so, we
aim to balance the trade-off between model efficiency and
image quality, facilitating practical deployment in real-time
Monte Carlo rendering.

The proposed RAKD framework is comprised of a local-
to-global knowledge distillation module, a render-aware pa-
rameter initialization strategy, and an auxiliary unlabeled
dataset. The local-to-global knowledge distillation module
is designed to align the features of the teacher model and
the student model on both pixel-level and image-level. This
helps to preserve the structural information in the dense
rendering contents as much as possible during knowledge
distillation. The render-aware parameter initialization strat-
egy tries to facilitate the training of the small-sized student
model, making it converge fast to the optimal solution of the
teacher model. In addition, an auxiliary unlabeled dataset is

collected, aided by the teacher model, to improve the gener-
alization ability of the student model. Experimental results
on multiple benchmark scenes have demonstrated the effec-
tiveness and superiority of the proposed RADK framework.
In particular, it helps to achieve state-of-the-art Monte Carlo
denoising quality with a very small neural network, guaran-
teeing real-time running performance.

Methodology
In this section, we unfold the details of our render-aware
knowledge distillation (RAKD) framework, specially de-
signed for solving the Monte Carlo denoising task in real
time.

Overview
An overview of RAKD is shown in Fig. 1. As a typical
KD framework, RAKD contains a computationally expen-
sive teacher network and a lightweight student network. The
teacher network has a large size and is designed to learn
rendering-aware knowledge as much as possible from the
training dataset. In contrast, the student network has much
fewer trainable parameters than the teacher network. The
key point lies in refining the knowledge transfer process
from the teacher model to the student model. In this sec-
tion, we first describe our denoise model architecture and
then introduce our RAKD framework. Finally, we elucidate
our implementation details. Our RAKD framework can be
summarized into several strategies:

• We introduce a local-to-global knowledge distillation
module so that we can distill structural rendering infor-
mation both on pixel level and image level.

• We adapt render-aware knowledge initialization to pro-
vide knowledge for our student model at the beginning
of our training and facilitate the training of our student
model.

• We make use of auxiliary unlabeled dataset to expand
our dataset in reasonable time. The auxiliary unlabeled
dataset is rich in denoising knowledge, which is good for
student’s knowledge distillation process.

Teacher model and student model
Our teacher model and student model all follow the basic
rule of kernel prediction, as described in Bako et al. (2017);
Vogels et al. (2018), and use downsampling and upsampling
approaches to generate denoising kernels. We further sup-
press noise by using a pyramid-layer architecture similar to
(Balint et al. 2023) when using the predicted kernels to filter
on the input radiance.

Our teacher network employs a complex architecture and
extensive computational power to produce excellent denois-
ing results. Our teacher network has a design of multi-layer
architecture, which is composed of three layers. Each layer
contains an EmbedNet and a kernel predictor to generate
kernels. We let these layers generate different sizes of ker-
nels to capture different scales of details. Bigger denoising
kernels allow for better denoising quality while increasing



Figure 1: The proposed RAKD framework contains several knowledge distillation modules: a local-to-global knowledge dis-
tillation module, a render-aware knowledge initialization strategy, and an auxiliary unlabeled dataset. We compute pixel-wise
loss between the denoised outputs of the student model and the teacher model. We also compute the global loss from the dis-
criminator. These losses are used to guide the knowledge distillation process from the teacher model to the student model. The
Wasserstein loss is used to train the discriminator.

computational cost (Fan et al. 2021), and our teacher net-
work employs big denoise kernels. The kernel sizes range
from 5 to 9 with a step size of 2.

Our denoise input is made up of low sample per pixel
noisy input Lt and auxiliary features ft at frame t which
are computed at primary ray intersections, including albedo,
normal, and depth. They are concatenated into a tensor with
10 channels.

As shown in Fig. 2, the input tensor is first sent into the
embed net composed of several convolution layers to project
the original input into a high-dimensional space, yielding the
embedded feature vector et. The embedded feature vector is
then sent into the U-Net-based kernel predictor to get de-
noising kernels kt and temporal weight λt.

Then, we use the predicted kernels kt to filter the noise
radiance Lt through kernel convolution and get the de-
noised radiance Ot. We follow the state-of-the-art pyramid
architecture which is proven to be good at avoiding low-
frequency responses when filtering the input radiance. For
each layer in our teacher model, we downsample the noise
input into 4 pyramid layers and denoise the noise radiance
at different resolutions. Then we upsample each pyramid
layer’s denoising results and combine them.

After each layer filters the original noise radiance, our
teacher model uses a blending weight (BW) predictor to gen-
erate per-pixel weight maps for the denoising results of each
layer. The denoising results are then blended according to
the weight maps to produce the final output. Our BW pre-
dictor also uses a U-Net as its backbone. For our teacher
network where there are three denoise layers, we operate the
following blending step:

Ot =

3∑
i=1

wiOti (1)

where wi is the weight map generated by our BW predictor.

We compute the accumulated per pixel noise Lt and aux-
iliary features ft over time for temporal stability:

Lt = λtLt + (1− λt)WtLt−1 (2)
ft = λtft + (1− λt)Wtft−1 (3)

where Wt denotes the warping operator, which uses mo-
tion vector to warp and bilinearly interpolate frame t − 1
to frame t. For the final output, we incorporate an extra tem-
poral blend:

Ot = λtOt + (1− λt)WtOt−1 (4)

Our student model is designed for real-time denoising. We
choose the layer with kernel size of 5 in our teacher network
as our student network for real-time requirements.

We further adjust the student’s pyramid architecture for
real-time requirements, where we reduce the channels in the
embedding layer and U-Net.

Local-to-global knowledge distillation
Rendering contents are dense and structural, so we adopt a
local-to-global knowledge distillation strategy. On the local
level, we apply our local knowledge distillation, where we
compute the per-pixel loss for the denoised output of our
teacher model and student model.

Recent work successfully introduced GAN to the KD
process for better and more stable learning (Micaelli and
Storkey 2019; Fang et al. 2019; Liu et al. 2020). As for
our global distillation, we introduce the generative adversar-
ial network to our RAKD and perform distillation on image
level.

In our work, GAN with self-attention layers (Zhang et al.
2019) is applied as a regularization part for the KD process.
We treat our student network as the generator part of the
GAN, whose denoised outputs are treated as fake samples,



Figure 2: Network architecture of the teacher network and student network. The complete figure represents our multi-layered
teacher network, which infers denoising results across various layers. The section highlighted with a yellow background repre-
sents our student network, which employs a single layer with a kernel size of 5. Note that there are differences in the number
of channels between the EmbedNet and U-Net Kernel predictor components of our student and teacher networks.

and the denoised outputs of the teacher network are treated
as real samples. We design a discriminator additionally, and
the self-attention scheme is adopted for better capturing the
space information.

GAN suffers from unstable gradient in training when we
use Kullback-Leibler (KL) or Jensen-Shannon (JS) diver-
gence; therefore, in our case, the Wasserstein distance (Gul-
rajani et al. 2017) is applied:

W(p, q) = sup
∥f∥L≤1

Ex∼p[f(x)]− Ey∼q[f(y)], (5)

where the supremum is taken over all Lipschitz functions f
with a Lipschitz constant not greater than 1.

Render-aware knowledge initialization
The weights of the student network are often initialized as a
function of the weights of the teacher network in knowledge
distillation (Lin et al. 2020; Wang et al. 2023). We introduce
our render-aware knowledge initialization into our RAKD
framework, allowing the knowledge about the rendering pro-
cess learnt by our teacher model to be efficiently initialized
in our student model. The U-Net-based kernel predictor in
our denoising framework plays a core part in generating de-
noising kernels and temporal weights. We design the kernel
predictor of our teacher and student models with composed
downsampling and upsampling layers, which have different
channels but the same number of layers.

Since our pre-trained teacher network and our student
network share the same U-Net backbone, we conveniently

extract parameters from the teacher and use them to ini-
tialize the student. Specifically, when extracting the corre-
sponding layers’ parameters from the teacher model with
shape (ht, wt, k, k) to the student model’s layers with shape
(hs, ws, k, k), we use a step size of ⌊ ht

hs
⌋ and ⌊wt

ws
⌋ in the

two dimensions to extract the necessary parameters.

Auxiliary unlabeled dataset
The efficacy of neural networks has been proven to be heav-
ily reliant on the quantity and quality of datasets. Previous
works (Sun et al. 2017) generate a large amount of high spp
data, ranging from 900 (Meng et al. 2020) to 65536 (Balint
et al. 2023), and it takes much computational resource and
time to generate numerous noise-free high spp data.

Inspired by the fact that an auxiliary unlabeled dataset is
significant to the KD process in other pixel-wise tasks like
dense prediction (Hu et al. 2023), we introduce an auxil-
iary unlabeled dataset to our denoising task. Our unlabeled
dataset is generated by using our pre-trained teacher model
to infer a large amount of noisy inputs and generate noise-
free results.

Our dataset is composed of the labeled part X and the
unlabeled part U . The loss function for student model can
be formulated as:

L =
1

X
∑

xi,gi∈X
(σl(Ns(xi), Nt(xi))+

(1− σ)l(Ns(xi), gi))+

1

U
∑
uj∈U

(l(Ns(uj), Nt(uj))

(6)



where l denotes our basic loss function, Ns and Nt denote
our student network and teacher network respectively, and gi
denotes the high spp reference for noisy input xi. σ is set to
0.5 in practice to balance the knowledge distillation process.

Then the overall spatial loss function for student can be
formulated as:

Lspatial = L− µ
1

|X |+ |U|
∑

xi∈X∪U
Ws(D(Ns(xi))) (7)

Ws(D(Ns(xi))) = ENs(xi)∼ps(Ns(xi)) [D (Ns (xi)] (8)

where L indicates the loss function in (6), D indicates the
discriminator of our GAN, and Ws is part of the the Wasser-
stein distance in (5), which denotes our global loss for global
knowledge distillation. ps (Ns (xi)) denotes the distribution
of our student model’s denoised output. µ is set to 0.05 in
practice to make these two parts comparable.

By leveraging an auxiliary unlabeled dataset, it is possi-
ble for us to greatly expand the dataset in reasonable time
since our teacher model takes much less time to get noise-
free results compared with time costing high spp reference
render process. The student only learns from the teacher on
the unlabeled dataset, which emphasizes the transfer of dark
knowledge (Hinton, Vinyals, and Dean 2015) and thus opti-
mizing the KD process.

Implementation details
Dataset We generate our labeled training dataset using
6 publicly available Tungsten scenes (Bitterli 2016), and
our unlabeled dataset is generated using 4 publicly avail-
able Tungsten scenes and 4 publicly available PBRT (Pharr,
Jakob, and Humphreys 2016) scenes. We use the Falcor ren-
derer (Kallweit et al. 2022) to render our input noise, G-
Buffer, and reference frames with 6000 samples per pixel.
Our training dataset consists of a total of 600 10-frame se-
quences. We randomize the objects’ materials and texture
for diversity in each sequence.

Loss function We choose symmetric mean absolute per-
centage error (SMAPE) as our basic loss function following
Munkberg and Hasselgren (2020), which can be formulated
as:

E(r, d) = Ex,y

[
dx,y − rx,y

|dx,y|+ |rx,y|+ ϵ

]
(9)

where r denotes the reference image and d denotes the de-
noised image. We set ϵ to 0.001 in practice.

As for our GAN part, we use Wasserstein distance as dis-
cussed above. Our SMAPE loss also considers temporal loss
where we use the motion vector to warp the last frame.

Temporal processing We adapted the idea of BackPropa-
gation Through Time (BPTT) (Graves 2012) to improve our
model’s temporal stability. In detail, we train our model on
10-frame sequences and we compute temporal loss on adja-
cent frames.

We extend our SMAPE loss for adjacent frames like:

Ltemporal =

SMAPE((Tt − W Tt−1) , (Ot − W Ot−1))
(10)

where Tt denotes the reference for frame t and Ot denotes
the denoised output for frame t.

The temporal loss is then added to the spatial loss function
(7):

Lall = Lspatial + λLtemporal (11)

λ is set to 0.1 to make these two parts comparable.

Training Our denoiser is implemented with PyTorch
(Paszke et al. 2017). We use Adam optimizer (Kingma and
Ba 2014) with a learning rate of 10−4 in the beginning, and
we use a stepLR scheduler to decay our learning rate by a
factor of 0.8 every 100 epochs. We take 256 x 256 patches
on our dataset and augment them with rotations and flips.
We use a batch size of 8 to train our model. It takes about
500 epochs for our teacher model to converge on our la-
beled dataset, costing about 3 days on a single RTX 4090
GPU, and it takes about 800 epochs for our student model to
converge on the union of our labeled dataset and unlabeled
dataset, costing about 5 days on a single RTX 4090 GPU.
We train the GAN’s discriminator together with our student
model with the same training setup. We further optimize our
model to run in real-time using TensorRT. 1

Results
We evaluate the performance of our RAKD framework and
two denoisers (the large teacher model and the small student
model) on a set of test scenes, including the Bistro (Lumber-
yard 2017), Zero-Day (Winkelmann 2019), Classroom and
Dining room (Bitterli 2016). We allow for a 10-frame warm-
up phase at the start of every test sequence for our method
and compared methods to accumulate temporal information.
We utilize ACES tone mapping (Reinhard et al. 2023) to
tonemap the output frame.

Comparisons with real-time methods
We compare our student model to state-of-the-art real-
time denoisers: the Nvidia OptiX AI-accelerated Denoiser
(ONND) version 7.5 with temporal (Hasselgren et al. 2020)
and kernel-based (Bako et al. 2017) extensions enabled
(Chaitanya et al. 2017), the weight-sharing model (WS)
by Fan et al. (2021) and the neural partitioning pyramids
model (NPPD) by Balint et al. (2023). We retrain the weight-
sharing model and NPPD on our labeled dataset while using
the pre-trained ONND included in OptiX. Since the NPPD
model needs per-sample data as input, we adjusted the per-
sample data encoding for fair comparison with our per-pixel
data input approach. All comparisons were conducted on the
NVIDIA RTX 4090 GPU. Our student model, leveraging
TensorRT acceleration, denoises a full HD frame (1920 ×
1080) in 10 ms, comparable to the 10 ms required by ONND,
the 3-5 ms by the weight-sharing model, and the 30 ms by
the NPPD model.

We compare different methods on commonly used per-
pixel peak signal-to-noise ratio (PSNR) and structural simi-
larity (SSIM) metrics. The comparative results are presented
in Table 1.

1https://developer.nvidia.com/tensorrt



Bistro Zero-Day Dining room Classroom
Method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Ours (S) 25.36 0.832 26.95 0.897 35.02 0.974 30.62 0.946
ONND 23.86 0.784 25.38 0.878 32.77 0.964 29.06 0.934
NPPD 24.33 0.792 25.99 0.879 33.66 0.965 30.08 0.939
WS 23.12 0.722 24.64 0.856 30.37 0.953 28.62 0.924

Ours (T) 26.54 0.848 27.14 0.903 36.42 0.977 31.87 0.953
OIDN 25.26 0.815 26.90 0.897 35.31 0.974 31.18 0.951

Table 1: Quantitative comparison of the baseline methods on
4 spp inputs. We show denoising results on the Bistro, Zero-
Day, Classroom and Dining room scenes. Higher scores in-
dicate better performance.

Figure A.2 detailed in Appendix A shows a visual com-
parison of real-time denoising performance for selected
scenes. Other methods (ONND and WS) retain some high
and low-frequency noise. Additionally, NPPD demonstrates
relatively effective denoising but tends to over-blur high-
frequency details at locations where the feature buffers fail
to capture such information. Our student model is able to
effectively remove noise while preserving lighting and tex-
ture details. In the red inset of the Bistro scene, Our method
can effectively handle complex lighting and shading effects,
whereas ONND, WS, and NPPD struggle with these aspects.
In the Dining room scene, our method can faithfully preserve
the intricate details of the plates. In contrast, ONND and
WS fail to effectively remove the noise, while NPPD ends
up over-smoothing the details. In the blue inset of the Zero-
Day1 scene, our method is able to effectively remove noise
while preserving the intricate material and lighting details.
In contrast, NPPD and WS fail to capture these fine details.
While ONND is also able to handle the material details cor-
rectly, it is unable to reproduce the reddish glow emanating
from the light sources in the scene.

Comparisons with offline methods
We compare our teacher model and student model with the
state-of-the-art offline denoiser Intel Open Image Denoise
(OIDN) (Áfra 2024) version 2.0.0. For comparison, we use
the available pre-trained OIDN model. OIDN typically re-
quires approximately 70ms to denoise a single 1920 × 1080
picture on Intel i9 CPU, a performance level that aligns with
our teacher model’s denoising time for images of the same
size. Table 1 shows the quantitative comparison results.

Figure A.3 detailed in Appendix A shows a visual com-
parison of offline denoising performance for selected scenes.
While OIDN exhibits reasonably effective denoising capa-
bilities, it struggles to handle the intricate texture details of
materials and the complex lighting and shading effects in
the scenes. In contrast, the teacher model, with the aid of the
GAN discriminator during training, has a stronger ability to
preserve fine details. Furthermore, through the knowledge
distillation training process, the student model can learn
and inherit the detail-preserving capabilities of the teacher

Method Ours (S) w/o D w/o G w/o I

Bistro
PSNR 25.36 24.58 24.93 25.22
SSIM 0.8322 0.7715 0.8196 0.8149

Zero-Day
PSNR 26.95 25.97 26.69 26.67
SSIM 0.8972 0.8804 0.8930 0.8925

Classroom
PSNR 30.62 26.54 29.64 29.85
SSIM 0.9461 0.9049 0.9370 0.9380

Dining room
PSNR 35.02 32.43 33.07 33.80
SSIM 0.9739 0.9615 0.9667 0.9688

Table 2: Quantitative comparison for ablation study. Our
complete knowledge distillation framework is compared
with (1) training the student model only on the labeled
dataset (the column ”w/o D”), (2) training the student model
only with our local per-pixel loss, without GAN regulariza-
tion and global loss (the column ”w/o G”), and (3) replacing
our render-aware knowledge initialization strategy with the
Xavier initialization strategy (the column ”w/o I”). Metrics
are averaged on the Bistro, Zero-Day, Classroom and Din-
ing room scenes. Higher scores indicate better performance.

to a certain extent. In the red inset of the Bistro and the
blue inset of the Zero-Day1 scenes, the teacher model can
effectively preserve the intricate details of object bound-
aries. Through the knowledge distillation process, the stu-
dent model has also learned to some extent the capability of
boundary preservation, exhibiting reasonably good denois-
ing performance. In contrast, OIDN struggles when deal-
ing with multiple overlapping distant objects, often resulting
in blurring or color confusion issues. In the Classroom and
Dining room scenes, we can also observe that the student
model has effectively learned the light and shadow handling
capabilities of the teacher model. As a result, it is able to
accurately reproduce the visual effects of shadows cast by
objects such as windows and lamps, and the denoising per-
formance approaches that of the offline OIDN method.

Ablation on different knowledge distillation choices
We perform ablation experiments to validate the necessity
of our proposed distillation strategies. We train our student
model only on our labeled dataset, we train our student
model only with the local pixel-wise distillation, without
GAN regularization and global loss and we train our student
model with Xavier initialization (Glorot and Bengio 2010)
instead of using our render-aware knowledge initialization
to initialize it respectively. Table 2 shows metrics averaged
on our test scenes and Figure 3, Figure 4, and Figure 5 show
visual comparisons of our ablation experiments.

Performance analysis
Our local-to-global knowledge distillation includes both lo-
cal pixel-level distillation and global image-level distilla-
tion. The global distillation is achieved through the GAN,
which is crucial to the KD process and serves as regulariza-
tion for the KD process. Without the GAN’s discriminator,



Input Ours (S) w/o D Reference

Figure 3: Ablation on the auxiliary unlabeled dataset. Our
complete framework is compared with training the student
model only on our labeled dataset, without the unlabeled
dataset, on the Bistro scene.

Input Ours (S) w/o G Reference

Figure 4: Ablation on the local-to-global knowledge distil-
lation module. Our complete framework is compared with
training the student model only using our local per-pixel
loss, without the regularization from GAN, on the Bistro
scene.

our student model tends to overfit the training dataset and ex-
hibits poor generalization. Visual comparison can be found
in Figure 4, where training our student model solely with lo-
cal pixel-wise loss, the edges in the results can be blurry as
the student learns inadequately from the teacher.

Our render-aware knowledge initialization aims to pro-
vide a better initialization for the student. When using
a common initialization method such as Xavier, our stu-
dent may converge to a suboptimal position. Our proposed
render-aware knowledge initialization strategy requires a
similar backbone for the teacher and the student. It is ele-
gant yet useful according to the results.

Our auxiliary unlabeled dataset is crucial for the train-
ing of our student model. Training on the unlabeled dataset
emphasizes more on the denoising results of our teacher
model, which is necessary for the KD process. We argue
that the teacher’s denoising performance plays an important
role, and we should refrain from using an unlabeled dataset
to avoid potential side effects in scenes where the teacher
struggles to denoise effectively.

Input Ours (S) w/o I Reference

Figure 5: Ablation on render-aware knowledge initializa-
tion. Our complete framework is compared with training
the student model only using Xavier initialization, without
render-aware knowledge initialization, on Bistro scene.

Input Ours (S) Reference

Figure 6: Failure case. Our method may fail when facing
scenes featuring specular reflection. Here, we see the scene
rendered through a mirror.

Limitations
Our method has several limitations. Firstly, the proposed de-
noiser heavily relies on primary ray intersections, and its
performance may decline when facing specular objects, as
shown in Fig. 6. A possible solution would include splitting
diffuse and specular radiance in the input (Bako et al. 2017).
Secondly, while we use temporal loss for temporal stability,
our dataset consists of 10-frame sequences, shorter than re-
cent works that use 64-frame sequences (Balint et al. 2023).
Access to a broader range of datasets with longer sequences
is useful for further improving temporal stability.

Conclusion
In conclusion, we have proposed the first knowledge distil-
lation framework, named RAKD, for real-time Monte Carlo
denoising. Considering the dense and structural rendering
contents, several special designs are incorporated into this
framework: a local-to-global knowledge distillation mod-
ule, a render-aware knowledge initialization strategy, and an
auxiliary unlabeled dataset. Aided by this framework, we
can distill complex render information both on pixel level
and image level. Attributing to the small size of the student
model, we achieve real-time performance on neural denois-
ing and succeed in retaining high-frequency details as com-
pared with previous work. Our proposed knowledge distil-
lation framework is not restricted to a particular denoising
backbone and holds promise for future applications in real-
time denoising efforts.
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J.; Harvill, A.; Sen, P.; Derose, T.; and Rousselle, F.
2017. Kernel-predicting convolutional networks for denois-
ing Monte Carlo renderings. ACM Trans. Graph., 36(4).
Balint, M.; Wolski, K.; Myszkowski, K.; Seidel, H.-P.; and
Mantiuk, R. 2023. Neural Partitioning Pyramids for De-
noising Monte Carlo Renderings. In ACM SIGGRAPH
2023 Conference Proceedings, SIGGRAPH ’23. New York,
NY, USA: Association for Computing Machinery. ISBN
9798400701597.
Bitterli, B. 2016. Rendering resources. Https://benedikt-
bitterli.me/resources/.
Burgess, J. 2020. RTX on the NVIDIA Turing GPU. IEEE
Micro, 40(2): 36–44.
Chaitanya, C. R. A.; Kaplanyan, A. S.; Schied, C.; Salvi, M.;
Lefohn, A.; Nowrouzezahrai, D.; and Aila, T. 2017. Inter-
active reconstruction of Monte Carlo image sequences using
a recurrent denoising autoencoder. ACM Transactions on
Graphics (TOG), 36(4): 1–12.
Fan, H.; Wang, R.; Huo, Y.; and Bao, H. 2021. Real-time
Monte Carlo Denoising with Weight Sharing Kernel Predic-
tion Network. Computer Graphics Forum, 40(4): 15–27.
Fang, G.; Song, J.; Shen, C.; Wang, X.; Chen, D.; and
Song, M. 2019. Data-Free Adversarial Distillation. CoRR,
abs/1912.11006.
Glorot, X.; and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on arti-
ficial intelligence and statistics, 249–256. JMLR Workshop
and Conference Proceedings.
Graves, A. 2012. Long Short-Term Memory, 37–45. Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-
24797-2.
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved training of wasserstein
gans. Advances in neural information processing systems,
30.
Harada, T. 2020. Hardware-Accelerated Ray Tracing in
AMD Radeon ProRender 2.0. https://gpuopen.com/learn/
radeon-prorender-2-0/.
Hasselgren, J.; Munkberg, J.; Salvi, M.; Patney, A.; and
Lefohn, A. 2020. Neural Temporal Adaptive Sampling and
Denoising. Computer Graphics Forum, 39(2): 147–155.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network. arXiv:1503.02531.
Hu, J.; Fan, C.; Jiang, H.; Guo, X.; Gao, Y.; Lu, X.; and
Lam, T. L. 2023. Boosting lightweight depth estimation
via knowledge distillation. In International Conference on
Knowledge Science, Engineering and Management, 27–39.
Springer.
Huo, Y.; and Yoon, S. 2021. A survey on deep learning-
based Monte Carlo denoising. Comp. Visual Media, 7: 169–
185.
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Adler, D.; Meyer, M.; and Novák, J. 2018. Denoising with kernel
prediction and asymmetric loss functions. ACM Transactions on
Graphics (TOG), 37(4): 1–15.
Wang, X.; Weissweiler, L.; Schütze, H.; and Plank, B. 2023. How
to Distill your BERT: An Empirical Study on the Impact of Weight
Initialisation and Distillation Objectives. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), 1843–1852. Toronto, Canada: Associa-
tion for Computational Linguistics.
Wei, X.; Huang, H.; Shi, Y.; Yuan, H.; Shen, L.; and Wang, J.
2021. End-to-End Adaptive Monte Carlo Denoising and Super-
Resolution. CoRR, abs/2108.06915.
Winkelmann, M. 2019. Zero-Day, Open Research Content Archive
(ORCA). https://developer.nvidia.com/orca/beeple-zero-day.
Xu, B.; Zhang, J.; Wang, R.; Xu, K.; Yang, Y.-L.; Li, C.; and Tang,
R. 2019. Adversarial Monte Carlo denoising with conditioned aux-
iliary feature modulation. ACM Trans. Graph., 38(6).
Young, L. D.; Reda, F. A.; Ranjan, R.; Morton, J.; Hu, J.; Ling,
Y.; Xiang, X.; Liu, D.; and Chandra, V. 2021. Feature-Align
Network with Knowledge Distillation for Efficient Denoising.
arXiv:2103.01524.
Yu, J.; Nie, Y.; Long, C.; Xu, W.; Zhang, Q.; and Li, G.
2021. Monte Carlo Denoising via Auxiliary Feature Guided Self-
Attention. ACM Transactions on Graphics, 40(6): 13.
Zhang, H.; Goodfellow, I.; Metaxas, D.; and Odena, A. 2019. Self-
attention generative adversarial networks. In International confer-
ence on machine learning, 7354–7363. PMLR.
Zhdan, D. 2021. ReBLUR: A Hierarchical Recurrent Denoiser.
Berkeley, CA: Apress.
Zou, B.; Zhang, Y.; Wang, M.; and Liu, S. 2023. Toward Efficient
Image Denoising: A Lightweight Network with Retargeting Super-
vision Driven Knowledge Distillation. In Advances in Computer
Graphics: 39th Computer Graphics International Conference, CGI
2022, Virtual Event, September 12–16, 2022, Proceedings, 15–27.
Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-031-23472-9.
Zwicker, M.; et al. 2015. Traditional Denoising Methods in Ren-
dering. ACM Transactions on Graphics, 34(4): 1–10.


